Draft Minutes of SVS-GA/FAA Workshop

10/21, 10/22, 10/23, and 10/24

Lou Glaab

Attendance list:

<u>#</u>	<u>Last name</u> <u>F</u>	irst name	<u>Affiliate</u>	E-mail	Phone #	Oct-02
1	Adam C	Chip	FAA, Long Beach ACO	chip.adam@faa.gov	(562)627-5369	Y
2	Adams C	Cathy	NASA LaRC/SATS	c.a.adams@larc.nasa.gov	(757)864-3040	Y
3	Adams R	Rich	NASA LaRC (Booz Allen)	r.j.adams@larc.nasa.gov	(757)864-1179	Y
4	Alexander A	Amy	University of Illinois	alalexan@s.psych.uiuc.edu	(217)244-4461	Y
5	Allen C	Cheryl	NASA LaRC/SVS	c.l.allen@larc.nasa.gov	(757)864-4438	Y
6	Asay A	August	FAA, Anchorage ACO	august.asay@faa.gov	(907)271-2673	Y
7	Bailey R	Randy	NASA LaRC/SVS-CAB	r.e.bailey@larc.nasa.gov	(757)864-8682	Y
8	Baize D	Dan	NASA LaRC/SVS	d.g.baize@larc.nasa.gov	(757)864-1071	Y
9	Basehore M	Лike	FAA, AvSP	m.l.basehore@nasa.larc.gov	(757)864-8951	N
10	Berringer D	Dennis	FAA, CAMI	dennis.berringer@faa.gov	?	N
11	Branstetter Ji	im	FAA, LaRC Field Office	j.r.branstetter@larc.nasa.gov	(757)864-6396	Y
12	Buntin M	Marc	FAA, Safe Flight 21	charles.buntin@faa.gov	(202)493-4990	N
13	Burdette D	Dan	NASA LaRC (Lockheed)/SVS-GA	d.w.burdette@larc.nasa.gov	(757)864-6644	Y
14	Call Ja	ames	FAA, Capstone	james.m.call@faa.gov	(907) 271-3771	N
15	Childers G	Gary	FAA, Capstone	Gary.Childers@faa.gov	?	N
16	Comstock R	Ray	NASA LaRC/SVS-CAB	j.r.comstock@larc.nasa.gov	(757)864-6643	Y
17	Croom D	Del	NASA LaRC/SVS-ET	d.r.croom@larc.nasa.gov	(757)864-9756	Y
18	Darr S	Steve	Satellite Programs Inc.	stephen.darr@verizon.net	(781)784-4005	Y
19	Dillard A	Archie	FAA, AFS-408	archie.dillard@faa.gov	405-954-4562	N
20	Donovan C	Colleen	FAA, AIR-120?	Colleen.Donovan@faa.gov	?	N
21	Finelli G	Goerge	NASA LaRC/AvSP	g.b.finellie@larc.nasa.gov	(757)864-6188	Y
22	Foster L	owell	FAA, SMAD	lowell.foster@faa.gov	(816)329-4125	Y
23	Glaab L	.ou	NASA LaRC/SVS-GA	l.j.glaab@larc.nasa.gov	(757)864-1159	Y
24	Gollings D	Dave	FAA, Atlanta ACO	dave.gollings@faa.gov	(770)703-6061	Y
25	Goodrich K	Ken	NASA LaRC/SATS	k.h.goodrich@larc.nasa.gov	(757)864-4009	Y
26	Harkin Je	erry	Universal Avionics	jharkin@uasc.com	(520)434-4400	Y
27	Holland Je	eff	FAA, Wichita ACO	jeff.holland@faa.gov	(316)946-4184	Y
28	Hughes N	Monica	NASA LaRC/SVS-GA	m.f.hughes@larc.nasa.gov	(757)864-3942	Y
29	Johnson T	Com	Universal Avionics	tjohnson@uasc.com	(520)295-2301	Y
30	Kolano E	Eddie	FAA, Seattle ACO	Ed.Kolano@faa.gov	?	N
31	Krohn P	atrick	Universal Avionics	pkrohn@uascwa.com	?	N
32	Lemos K	Katherine	University of Iowa	klemos@engineering.uiowa.edu	(319)335-5628	Y
33	Livack G	Garret	FAA,?	garret.livack@faa.dot.gov	?	N
34	Lombard K	Kolie	FAA, KLAAS?	kolie.ctr.lombard@larc.nasa.gov	(202)385-4592	Y
35	McDaniels Ji	im	FAA,?	James.McDaniel@faa.dot.gov	?	N
36	McGee F	Frank	NASA LaRC (Lockheed)/SVS-GA	f.g.mcgee@larc.nasa.gov	(757)864-2010	Y
37	Myer R	Robb	NASA LaRC (CONITS)/SVS-GA	r.r.myer@larc.nasa.gov	(757)224-4083	Y
38	Newman R	Richard	Embry-Riddle (Prescott)	richard.newman@erau.edu	(928)777-6955	Y
39	Norman M	Лike	NASA LaRC (Boeing)/SVS-CAB	r.m.norman@larc.nasa.gov	(757)864-6655	Y

40	Norris	Eddie	NASA LaRC/SVS-CAB	e.l.norris@larc.nasa.gov	(757)864-????	Y
41	Parrish	Russ	NASA LaRC/SVS-CAB	r.v.parrish@larc.nasa.gov	(757)864-6649	Y
42	Pratt	Gordon	Chelton	gpratt@cheltonflightsystems.com	?	N
43	Press	Hayes	NASA LaRC (Lockheed)/SVS-GA	h.n.press@larc.nasa.gov	(757)864-2715	Y
44	Price	Rick	Chelton	hornetball@aol.com	(281)773-7540	Y
45	Prinzel	Lance	NASA LaRC/SVS-CAB	l.j.prinzel@larc.nasa.gov	(757)864-2277	Y
46	Rathbun	Roger	Universal Avionics	rrathbun@uascwa.com	(425)602-1430	Y
47	Rissmiller	Ralph	FAA, Wichita ACO	Ralph.Rissmiller@faa.gov	?	N
48	Rivers	Robb	NASA LaRC/Pilots Office	r.a.rivers@larc.nasa.gov	(757)864-3917	Y
49	Streeter	Don	FAA, Flight Standards	donald.w.streeter@faa.gov	(202)385-4567	Y
50	Stubblefield	Terry	FAA, ?	terry.stubblefield@faa.gov	(202) 385-4588	N
51	Takallu	Mamad	NASA LaRC (Lockheed)/SVS-GA	m.a.takallu@larc.nasa.gov	(757)864-7671	Y
52	Tong	Hank	FAA, Long Beach ACO	Hank.Tong@faa.gov	?	N
53	Wenke	Steve	Boeing Comm (Seattle)	stephen.h.wenke@boeing.com	(425)294-3672	Y
54	Williams	Kevin	FAA, CAMI	kevin.williams@faa.gov	(405)954-6843	Y
55	Young	Steve	NASA LaRC/SVS-ET	s.d.young@larc.nasa.gov	(757)864-1709	Y

Total for 10/2002

Actual agenda

	day, October 21 st , 2002 Static demonstration of NASA LaRC Cessna-206	Jason Sweeters								
	o de agridações									
Tuesday, October 22 nd , 2002										
	Welcome and Introductions	George Finelli								
	SVS-GA Overview	Lou Glaab								
0915	Low-Visibility Loss of Control experiment results	Mamad Takallu								
0945	Break									
1015	Terrain Portrayal for Head-Down Displays (TP-HDD, sim)	Monica Hughes								
	Preliminary Results									
1115	TP-HDD, flight Preliminary Results	Lou Glaab								
1245	Lunch	NASA Cafeteria								
1230	GAWS Demo-1	Frank McGee								
1445	Capstone-2 status	August Asay								
1600	Chelton EFIS-2000/Capstone-2/Outlook	Rick Price								
1645	Adjourn									
1700	TP-HDD completion celebration (all invited!)									
	LAA Picnic Grounds									
	1									
	esday, October 23 rd , 2002									
0815	Universal Vision-1 FAA certification effort	Tom Johnson								
0850	FAA SVS Certification Perspective	Lowell Foster								
1000	Symbology Development for Head-Down Displays	Mamad Takallu								
	Experiment Overview									
1100	Certification Issues catalog/future research needs	Lou Glaab								
1130	GAWS Demo-2	Frank McGee								
1130	Static demonstration of NASA LaRC Cessna-206	Jason Sweeters								
1300	Cessna-206 Flight Demo #1	Tom Johnson								
1400	Cessna-206 Flight Demo #2	Rick Price								
1500	Cessna-206 Flight Demo #3	August Asay								
	Cessna-206 Flight Demo #4	Don Streeter								
1700	Cessna-206 Flight Dmeo #5	Steve Wenke								
TTI.	1 0 1 24 th 2002									
	Thursday, October 24 th , 2002									
	Cessna-206 Flight Demo #6	Steve Darr								
	Cessna-206 Flight Demo #7	Dick Newman								
1300	Cessna-206 Flight Demo #8	Eddie Norris								

Draft Minutes

Oct 22, 2002

Welcome and Introduction (George Finelli):

No comments

SVS-GA Overview (Lou Glaab):

- Experimental controls on ERAU exp
 - "Glass" pilot group will have to perform additional training to obtain their Instrument Rating.

Low-Visibility Loss of Control Experiment (Mamad Takallu):

- What order were displays used?
 - Randomized
- Did subjects have access to gages?
 - Yes, attitude indicator changed
 - Subjects could get attitude info from either SV display or gages
- Effects of hilly vs flat terrain noted?
 - Only hilly terrain employed for this test.
- Conventional EAI issues discussed
 - Pilot scanning
- Training on display symbology explained
- Did any of the groups (AI, EAI, SVS) get close to LVLOC?
 - Yes AI (one incident)
- Eye tracker information would have been valuable

TP-HDD sim (Monica Hughes):

- Terrain database discussion
 - Seasonal effects on PR imagery discussed
 - SVS imagery collected during summer months
 - No effort to account for seasonal effects
 - Best, easiest to see imagery is considered the primary concern
 - WGS84 standard for terrain models
 - Terrain validation
 - Databases within certified TAWS products so far (participants):
 - 30 arcsec
 - 6 arcsec
 - 3 arcsec for specific airports
 - Steve Young provided discussion regarding state of DB efforts (certification of processes, DBs, and standardization).
 - Commercial terrain products

- Del Croom provided a discussion regarding commercial data products.
- FOV discussion
 - High altitude upsets need a good pitch scale (Chip Adams)
 - Don't require pilots to select a good pitch scale if an upset occurs.
 - The current pitch scale was developed over years of testing and is a significant point/condition.
 - Point of view (conformal or not)
 - o Variable scales on selectable displays
 - Tunnel on/off: FOV control was the same. This could pose a control/display interaction effect.
- Terrain awareness data: Self assessment method
- Cooper-Harper scatter question
 - Discussion of method of C-H scale use was provided by Lou Glaab
 - May reflect more display preference then actual workload assessment.
- How were the effects of turbulence in the sim calibrated in a non-motion simulator?
 - Sim sessions with test/check pilot to establish appropriate levels
- Tunnel on vs off questions
 - o With no tunnel MX20 in terrain mode, no dogbones
 - Size of tunnel constant, distance between changes
- Questions about Rare Event concerning experimental setup and expected results
- Fish Net (FN) discussion
 - Below 200 ft the FN is known to be a distractor due to the rapid changes based on testing related to the Universal concept (edthought this test involved 6 pilots. Half were in favor, half strongly disliked it).
 - TP-HDD results were that some strongly disliked it (masked roads, rivers some times), some thought it was Ok, but not worth much.
 - Noted that some users derive benefit from the fishnet cue (speed and distance).
 - o FN familiarity and understanding of the FN could help.
- PR (alpha) EBG (color) blended imagery noted as a potential experiment for further consideration of PR texturing.

TP-HDD flight (Lou Glaab):

- Strategic/Tactical terrain integration discussion
 - Use of the MX-20 in terrain mode may be reflecting things that are particular to the MX-20 (i.e. the way it shows terrain in terrain mode).
 - Other types of strategic terrain portrayal may change integration philosophy.
- FOV is wider for GA than for CAB aircraft

Capstone-2 Status (August Asay):

- Regarding the question of the reliability of the University of Anchorage system that was installed
 - August noted that dual AHRS were employed for operational capabilities to support flights to/from various sites.
 - Backup AHRS could be used if there was a problem with the primary unit.
- Number of attitude sources: 3 (2-AHRS+conventional unit)
- PFD loss/reversionary modes: MFD can show PFD if unit fails
- Certification of aircraft
 - IFR certified.
 - Expected in early November.
- WAAS discussion
 - Most valuable part of WAAS was the integrity property
 - WAAS can also provide another altitude source
 - Related NPRM to be released
 - Improved FDE(?) and RAIM
 - o 129 GPS didn't have integrity monitor
 - Current rules don't accommodate RNAV without ground-based transmitter
- ADS-B discussion
 - o AK terrain too rugged for radar coverage
 - No ground based transceivers (GBTs) until next September
- No concept of "partial panel" under glass concepts
- Predictor construction/implementation differences noted
- Terrain databases could use "peaks database", ASMD-like decimation
- Certification of Capstone-2 equipment
 - NAS wide (not just in AK)
 - Aircraft equipment available in September (ed?)
 - Lots of flight testing going on
 - Software still be changed, but concluding shortly
 - Certification in November (one only at this time)
 - No show-stoppers at this point
 - Significant issues:
 - Malfunction failure annunciation
 - No partial panel
 - Attitude failure
 - Turn and bank indicator requirement
 - ERAU aircraft under multiple aircraft STC (December)
- Course deviation indicator (CDI) drive:
 - Velocity vector based director bars from other nav sources (like ILS)
- Velocity Vector (VV) discussion
 - Air-mass for vertical drive? (ed lots of discussion with this one. I don't think Chelton' VV is a pure air-mass thing. They use H-dot

- (pressure) with some acceleration to quicken it. Since ground speed is employed, this is not an air-mass VV).
- Turbulence conducive to VV PIO
- VV is dampened which has improved the performance and made it Ok.

Tunnel discussion

- The tunnel can be turned off (menu selectable) to facilitate use of the VV with the runway image for late-final guidance (ed-less than 2nm).
 - Lots of discussion regarding hazardously misleading information.
 - Would WAAS help this? Maybe not much.
- Takeoff Go Around (TOGA) tunnel discussion
 - Vertical flight path defined
 - The tunnel could cause a low-speed LOC if pilots keep pulling up to stay in tunnel when the aircraft won't enable that high of a flight path.
 - Stall warnings would mitigate this.
 - This is a good research issue.
- Has the FAA bought-off on the boxes (tunnel)
 - SMAD has
 - CDI is the primary reference (lateral nav).
 - En Route: tunnel off option
- Future FAA cert of tunnels to be done on a case by case basis
- Box/tunnel flight technical error (FTE)
 - En Route: tunnel in FOV, no needle deflection
- Flight below MDA
 - Training issue to avoid abuse of the system.
- NASA/Chelton discussion. Why is the NASA concept harder to fly?
 - Lots of discussion
 - Issue was resolved through demonstration flights to Rick Price (Chelton) and August Asay (FAA, Anchorage ACO). Lou Glaab and Rob Rivers were onboard for the demo flights.
 - o Both VVs (NASA and Chelton) behave similarly.
 - Use of the Chelton equipment for Capstone-2 employs a much lower level of FTE (.3 nm laterally (+/-1,800 ft)). This is based on non-precision approach standards.
 - NASA testing employed higher levels of FTE (+/- 100 ft laterally and +/- 80 ft vertically, or +/- 1 dot LOC and GS error) that are more like precision approach standards. Control of airspeed (+/-10kts) was also part of the NASA testing.
 - o Different levels of required FTE create different levels of workload.
- Terrain presentation discussion
 - o Can be hazardously misleading
 - Mitigating steps

- Use highest point (of 4) to set terrain elevation while downsampling DEM
- Use peaks database for DEM evaluations
- AK certification will have rippling effects (Chip Adam)
- o SVS SA and terrain awareness is not a warning system
- FAA engineers are driving concern over hazardously misleading (HM) information.
- Some general comments regarding SVS:
 - Doesn't look threatening enough, remove it (SVS)
 - Looks threatening, shouldn't have it (SVS)
- Use of TAWS precedence
 - If reliable enough for TAWS, should be enough for SVS.
 - Point made that navigation using TAWS is not permitted.
 - Some Part 23 vs. Part 25 discussion
 - Comment about operational environment closer than 700 ft (TAWS warning) to set the required accuracy of the TAWS db.
 - TAWS "Pull Up" alerts could cause a stall which should put some premium on the accuracy of the TAWS databases.
 - Ground clearance is not guaranteed.

Chelton EFIS-2000/Capstone-2 (Rick Price):

- Ed- Rick provided a demonstration of the EFIS-2000 system running on a laptop and projected onto the screen. This was a great way to step through the various features of the EFIS-2000 system as it is has been developed for the Capstone-2 program. A flight into, and around, Reno Nevada was simulated.
- Emphasized linear heading scale on Chelton SV concept
- Traffic advisory system, more like TCAS-1
- VV smoothing in displacement to reduce turbulence effects
- Update rate is about 20Hz
- "Free Run" mode is employed
- Transport delay
 - Data is updated at 45Hz
- Barometric temperature compensation was explored but the data required to perform the calculation made the calculation unworkable (i.e. where the baro pressure was recorded and when).
- "geometric altitude" = baro height ground
- Chelton's presentation impressive from a practical system perspective, especially the flight path (rather than the terrain) aspects.
 - O Bothersome issue is that their flight path marker apparently is airmass based, making it more heavily damped in the vertical axis than what we used in the C206. There is a concern about how theirs performs in head and tail wind conditions (should follow up with personnel in Dynamics & Control Branch).

- Selected heading-up on MFD since heading-up is what is used on the PFD.
- Engine parameters: problem with multiple sensor vendors
- Route entry modifications can be performed in flight.
- There is some obstruction of information when entering information via PFD
- Minimum range to the closest box/tunnel can reduce workload.
- Not being in the box/tunnel not a big deal.

Oct 23, 2002

Universal Vision-1 effort (Tom Johnson):

- Lots of discussion regarding Part-23 cert.
- Part-25 terrain db on PFD. No way to verify/assure terrain clearance with terrain db.
- Mis-use of SVS is a problem.
- Assumed operations
 - Proper/improper
- Universal Avionics faces a different FAA: no runway allowed, no terrain if TAWS warning active, no GPS-based information (no tunnel) allowed if ILS is available.
- Minimum Engineering Assessment Team (MEAT??) was formed to evaluate Vision-1 concept
 - Team empowered to make decisions regarding this system
 - o Team composition was small (6?).
 - Aside from all the certification issues concerning the Universal system is the perception (fact) of different treatment depending on which FAA ACO is involved.
- Lots of subjective data, need objective data.

FAA SVS Certification Perspective (Lowell Foster):

- Discussion regarding terrain db providing HM information.
 - o If it is good enough for TAWS, then should be OK for SVS
- Don't stop certification of equipment due to mis-use, since a lot of "certified" systems can be misused.
- FAA responsibility is to let the users know the limitation of equipment
- PFD terrain is just a backup to TAWS TAWS is primary terrain information source
- HITS is just another 3-D flight director
- FPM concern is just a training issue (ERAU study is important for that reason)
- Mountainous night VFR flight may be a challenging situation. Pilots could use lower altitudes since they can "see" the terrain on the SVS display.
- TAWS mandate in GA?

- Mandates greater than \$400 to \$500 in cost put it beyond consideration
- Most GA airplanes don't have TAWS, so how is PFD terrain is just a backup to TAWS?
- Fear of HM data on PFD is stifling progress.
 - Point made that current instruments can be misleading (tough to use).
- Fielding equipment can help learn a lot about them, more than testing/development can provide in a similar amount of time.
- No guarantee that extensive studies will catch everything anyway.
- NAV database process is uncertified.
- Stall cue should be in the center of the display
 - Emphasize low speed on display by replacing unusual attitude display with low speed warning
- Keep same team together for all SVS evaluations
 - Remove relative effects of personal bias
- Workload is driving characteristics of SVS concepts
- DO200 TAWS database not to descend below MDA
 - Hard to separate SA and navigation roles of SVS
- Discussion of test pilots
- The role of the test pilot
 - High-hour pilots miss the naivety of low-hour pilots
 - But, they are trained to know better, observe and articulate better, look for gotchas.

Symbology Development for Head-Down Displays (Mamad Takallu):

- Discussion regarding custom-made approaches vs using published approaches
 - Aggressive approach/stabilized approach
- Missed approach point (MAP) single engine turn vs. turn/climb
- Developing approaches for SE AK (Don Streeter to supply information).
- RNP vs. approach capabilities
 - Need to develop research approaches that make sense
 - o Apply RNP, if possible
 - Define other evaluation maneuver design considerations
- Opened discussion to what rare events/scenarios should be tested
 - Investigate workload issues on missed approach (gain altitude, then turn)
 - o Temperature could be used to drive indicated altitude lower
 - Vectors below obstacle clearance
 - o Path leads into terrain
 - o GPS failure
 - Error in terrain model
 - Use existing approaches at Sun Valley, Jackson Hole, Aspen
 - Use realistic TERPs-based approaches

- Don Pate to provide reference for release of new procedures
- Nav display for evaluations
 - Probably should avoid using the MX-20 (update rate)
- How do we assess SA?
 - o Interruption with objective measures
 - SAGAT
 - Rare Event scenarios
- How do we separate the effects of symbology and imagery?
 - o Subjective vs objective argument
- It was suggested that as SA improves, workload decreases
 - Use this effect by measuring the amount of secondary tasks required to reach workload saturation
- The effects of training were discussed
- Obstacles for rotorcraft remain a big issue

Certification Issues and Future Research Needs (Lou Glaab): In a reasonable order of priority

- 1. Terrain database accuracies
 - Real-time evaluations
 - Database integrity monitors
- 2. Hazardously Misleading information is a major concern
- 3. Training issues
- 4. Failure modes
 - Partial panel
 - Reversionary requirements
- 5. Aircraft attitude symbology
 - Lack of awareness
 - Prominence of attitude symbol
- 6. Visual cue and PIO
 - Sim world vs. actual flight world
- 7. Field of View
 - Depth perception
 - Maximum FOV
 - Useable minification factors
- 8. Size of tunnel
 - Guidance
 - FOV effects
 - Should tunnel scale with FOV?
- 9. Better reflection of certification issues in research
 - o Perform an initial pseudo FAA perspective within NASA research
- 10. Display update rates and PIO susceptibility
- 11. Some discussion regarding the NASA Space Shuttle SRTM data ensued, although not really a certification issue.
 - o Problems processing the data
 - Unsure of the schedule for release